Integrating Local Ecological Knowledge with Science to Refine Traditional Community-Based Fishing Moon Calendars

Eva Schemmel
Advisor: Alan Friedlander
Fisheries Ecology Research Lab
University of Hawaii, Manoa

Importance of Local Stewardship & Management

- Timing of natural cycles differs between locations
- Each bay is has different history & challenges
- Fish reproductive patterns have evolved to match local conditions
- Predictable based on lunar phase

Hawaiian Moon Calendar

- Traditionally
 - Dictated harvest & no take times or kapus
- Contemporary
 - Integrated approach to local resource monitoring

Project Goals

- Develop monitoring methods for assessing fish biology & spawning seasons
- Determine reproductive characteristics for priority species
- Assess spatial & temporal reproductive variability
- Develop outreach and education tools (Moon Calendars)

DEVELOP MONITORING METHODS FOR ASSESSING FISH BIOLOGY & SPAWNING SEASONS

Incorporating Local Knowledge

- Surveys & observer participation
- Harvested & ecologically important species identified
- Typical fishing practices
- Local threats

Photo credit: Chad Wiggins

Involving the Fishing Community

Fishermen Logbooks

Developing New Tools

• Field microscope for fish eggs

Gathering Spawning Seasons Data

- Training workshops
- Fishery monitors collect biological information & gonad samples for scientific assessment

Assessment Methods

- GSI Gonadosomatic Index
 GSI=(Gonad Wt./Fish Wt.)*100
- Histology
 Size at maturity
 Spawning Fraction= % spawners/day
 (Hunter and Macewicz 1983)
- Endocrinology
- Fecundity
 FB=N(M_G)M_{SUB}⁻¹

WHAT ARE THE BEST METHODS FOR MONITORING SPAWNING SEASONS?

Comparing Methods to Assess Size at Maturity

Spawning Seasons for Manini Maunalua Bay

Spawning Pattern for Manini Maunalua Bay

Endocrine Assessment

Comparing Methods Conclusions

What are the best methods for monitoring spawning seasons?

GSI methods adequate to determine spawning seasons & size at maturity

DETERMINE REPRODUCTIVE CHARACTERISTICS FOR PRIORITY SPECIES

Integrated Monitoring Fills Information Gaps

- 2500 fish from over 50 species
 - Spawning information for 10 species
 - Detailed reproductive information for 4 species
 - Acanthurus triostegus (manini)
 - Ctenochaetus strigosus (kole)
 - Kuhlia xenura (aholehole)
 - Cephalopholis argus (roi)

C. strigosus - Kole

C. strigosus – Size at Maturity

• Female $L_{50} = 8.1 \text{ cm}$ (n=88)

- Male $L_{50} = 13.6$ cm (n=122)
 - Maunalua Bay = 11.9 cm
 - North Kona= 14.6 cm

C. strigosus – Spawning Season

K. xenura - Aholehole

- Female $L_{50} = 18 \text{ cm}$ (n=119)
- Male $L_{50} = 16.5$ cm (n=70)
- Continuing Research
 - Comparing locations and habitat use

Naso unicornis - Kala

- 27 kala sampled
 - 12 female
 - 15 male
- Female L_{50} = ~31cm
- Spawning in August

DeMartini et al 2014

C. argus - Roi

- Size & age at maturity: 22.7cm (9") & 2.3 yrs
- Size & age at sex change: 41.5 cm (16.3") & 13.3 yrs

C. argus - Spawning Cycle

Schemmel, Donovan et al. in review

Priority Species Reproductive Assessments Conclusions

- Community monitoring provides life history information for commonly harvested species
- Generates database of spawning information for harvested fish.
- Database can be used to compare spawning information between location & years

A. triostegus - Manini

Differences in Manini Size at Maturity (L₅₀)

Spatial Differences in Manini Spawning Seasons

Temporal Variability in Manini Spawning Seasons in Maunalua

Maunalua Bay
Generalized Linear Model
GSI~Year*Month+Fork Length+ε

Factors	Chisq	DF	P-Value
Month	37.00	11	<0.01
Year	6.73	1	0.01
Month*Year	40.09	1	< 0.01
Fork Length	39.02	9	< 0.01

Comparing Between Locations— Organized Sample Collection

Samples collected April-May (~3 days)

Manini Spawning Periodicity – Locations Combined

Comparing Spawning Patterns

 Generalized Additive Mixed Models

$$\mathsf{GSI} {=} \mathsf{R}^* \mathsf{FL} {+} \mathsf{s} (\mathsf{LD}_\mathsf{R}) {+} \mathsf{s} (\mathsf{LD}_\mathsf{Y}) {+} \beta_\mathsf{gear} {+} \epsilon$$

 Variability between locations & years

Fecundity & Lunar Phase: Maunalua

Size & Reproductive Output

Small Fish, Big Results

- Size at maturity varies by location
- Spawning seasons & reproductive output vary by year
- Semilunar spawning
 - Pattern variable by location and year
- Fish size important management consideration

Gather & Share Information: Social Media

Spawning season information

>100 posts to Facebook/Spawning Seasons

500 followers

Reach >1,400

Share pono practices

Education & Outreach

- 40 outreach & educational events
 - Fishing tournaments, schools, community events, workshops, summer camps, conferences

Sustainable Fishing Practices

- Linking fishing practices with biological information to inform local management
- Share sustainable practices for each community through Moon Calendars

Moon Calendars

 Moon calendars developed for Malama Maunalua, Polanui (West Maui), Hui Aloha Kīholo

Conclusions

- Project gathers life history information necessary for management
- Links local practices with biological information
- Facilitates behavioral changes towards marine stewardship & sustainable harvest
- Builds trust between resource users, scientists, & regulating agencies

Recommendations & Future Directions

- Engage fishing community
- Increased awareness of reproductive biology for setting regulations
- Sharing with communities the knowledge & tools to monitor spawning seasons & size at maturity
- Continue monitoring spawning seasons

Mahalo

Fishermen

Fishery Monitors:

Bart Wilcox

Yumi Yasutake

Linda Castro

Kekaulike Tomich

Communities

Hui Aloha Kiholo

Malama Maunalua

Polanui

Maui Nui

Above & Beyond Volunteers

Matt Ramsey, Chad Wigging, Rebecca Most, Luka Mossman, Kehau Springer, Pelika Andrade, Keo Lopes

Funding

DAR- Coral Reef Working Group

Conservation International Hawai'i

West Marine

Additional Supporting Agencies

The Nature Conservancy

Fisheries Ecology Research Lab & Volunteers

Mary Donovan, Lauren Mathews, Alex Filous, Jonatha Giddens, Kosta Stamoulis, Keith Kamikawa, Kaylyn McCoy, Hal Koike, Paolo Usseglio, Madeline Anzivino, Erin Kawamoto,

Gwendolen Larrow

